3.62 \(\int x^5 \sqrt {d-c^2 d x^2} (a+b \sin ^{-1}(c x)) \, dx\)

Optimal. Leaf size=256 \[ -\frac {\left (d-c^2 d x^2\right )^{7/2} \left (a+b \sin ^{-1}(c x)\right )}{7 c^6 d^3}+\frac {2 \left (d-c^2 d x^2\right )^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{5 c^6 d^2}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )}{3 c^6 d}-\frac {b c x^7 \sqrt {d-c^2 d x^2}}{49 \sqrt {1-c^2 x^2}}+\frac {b x^5 \sqrt {d-c^2 d x^2}}{175 c \sqrt {1-c^2 x^2}}+\frac {8 b x \sqrt {d-c^2 d x^2}}{105 c^5 \sqrt {1-c^2 x^2}}+\frac {4 b x^3 \sqrt {d-c^2 d x^2}}{315 c^3 \sqrt {1-c^2 x^2}} \]

[Out]

-1/3*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/c^6/d+2/5*(-c^2*d*x^2+d)^(5/2)*(a+b*arcsin(c*x))/c^6/d^2-1/7*(-c^2
*d*x^2+d)^(7/2)*(a+b*arcsin(c*x))/c^6/d^3+8/105*b*x*(-c^2*d*x^2+d)^(1/2)/c^5/(-c^2*x^2+1)^(1/2)+4/315*b*x^3*(-
c^2*d*x^2+d)^(1/2)/c^3/(-c^2*x^2+1)^(1/2)+1/175*b*x^5*(-c^2*d*x^2+d)^(1/2)/c/(-c^2*x^2+1)^(1/2)-1/49*b*c*x^7*(
-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 256, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {266, 43, 4691, 12} \[ -\frac {\left (d-c^2 d x^2\right )^{7/2} \left (a+b \sin ^{-1}(c x)\right )}{7 c^6 d^3}+\frac {2 \left (d-c^2 d x^2\right )^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{5 c^6 d^2}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )}{3 c^6 d}-\frac {b c x^7 \sqrt {d-c^2 d x^2}}{49 \sqrt {1-c^2 x^2}}+\frac {b x^5 \sqrt {d-c^2 d x^2}}{175 c \sqrt {1-c^2 x^2}}+\frac {4 b x^3 \sqrt {d-c^2 d x^2}}{315 c^3 \sqrt {1-c^2 x^2}}+\frac {8 b x \sqrt {d-c^2 d x^2}}{105 c^5 \sqrt {1-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[x^5*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]

[Out]

(8*b*x*Sqrt[d - c^2*d*x^2])/(105*c^5*Sqrt[1 - c^2*x^2]) + (4*b*x^3*Sqrt[d - c^2*d*x^2])/(315*c^3*Sqrt[1 - c^2*
x^2]) + (b*x^5*Sqrt[d - c^2*d*x^2])/(175*c*Sqrt[1 - c^2*x^2]) - (b*c*x^7*Sqrt[d - c^2*d*x^2])/(49*Sqrt[1 - c^2
*x^2]) - ((d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]))/(3*c^6*d) + (2*(d - c^2*d*x^2)^(5/2)*(a + b*ArcSin[c*x]))
/(5*c^6*d^2) - ((d - c^2*d*x^2)^(7/2)*(a + b*ArcSin[c*x]))/(7*c^6*d^3)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 4691

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = IntHide[x^
m*(1 - c^2*x^2)^p, x]}, Dist[a + b*ArcSin[c*x], Int[x^m*(d + e*x^2)^p, x], x] - Dist[(b*c*d^(p - 1/2)*Sqrt[d +
 e*x^2])/Sqrt[1 - c^2*x^2], Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e}, x
] && EqQ[c^2*d + e, 0] && IGtQ[p + 1/2, 0] && (IGtQ[(m + 1)/2, 0] || ILtQ[(m + 2*p + 3)/2, 0])

Rubi steps

\begin {align*} \int x^5 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx &=-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int \frac {-8-4 c^2 x^2-3 c^4 x^4+15 c^6 x^6}{105 c^6} \, dx}{\sqrt {1-c^2 x^2}}+\left (a+b \sin ^{-1}(c x)\right ) \int x^5 \sqrt {d-c^2 d x^2} \, dx\\ &=-\frac {\left (b \sqrt {d-c^2 d x^2}\right ) \int \left (-8-4 c^2 x^2-3 c^4 x^4+15 c^6 x^6\right ) \, dx}{105 c^5 \sqrt {1-c^2 x^2}}+\frac {1}{2} \left (a+b \sin ^{-1}(c x)\right ) \operatorname {Subst}\left (\int x^2 \sqrt {d-c^2 d x} \, dx,x,x^2\right )\\ &=\frac {8 b x \sqrt {d-c^2 d x^2}}{105 c^5 \sqrt {1-c^2 x^2}}+\frac {4 b x^3 \sqrt {d-c^2 d x^2}}{315 c^3 \sqrt {1-c^2 x^2}}+\frac {b x^5 \sqrt {d-c^2 d x^2}}{175 c \sqrt {1-c^2 x^2}}-\frac {b c x^7 \sqrt {d-c^2 d x^2}}{49 \sqrt {1-c^2 x^2}}+\frac {1}{2} \left (a+b \sin ^{-1}(c x)\right ) \operatorname {Subst}\left (\int \left (\frac {\sqrt {d-c^2 d x}}{c^4}-\frac {2 \left (d-c^2 d x\right )^{3/2}}{c^4 d}+\frac {\left (d-c^2 d x\right )^{5/2}}{c^4 d^2}\right ) \, dx,x,x^2\right )\\ &=\frac {8 b x \sqrt {d-c^2 d x^2}}{105 c^5 \sqrt {1-c^2 x^2}}+\frac {4 b x^3 \sqrt {d-c^2 d x^2}}{315 c^3 \sqrt {1-c^2 x^2}}+\frac {b x^5 \sqrt {d-c^2 d x^2}}{175 c \sqrt {1-c^2 x^2}}-\frac {b c x^7 \sqrt {d-c^2 d x^2}}{49 \sqrt {1-c^2 x^2}}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )}{3 c^6 d}+\frac {2 \left (d-c^2 d x^2\right )^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{5 c^6 d^2}-\frac {\left (d-c^2 d x^2\right )^{7/2} \left (a+b \sin ^{-1}(c x)\right )}{7 c^6 d^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 157, normalized size = 0.61 \[ \frac {\sqrt {d-c^2 d x^2} \left (105 a \sqrt {1-c^2 x^2} \left (15 c^6 x^6-3 c^4 x^4-4 c^2 x^2-8\right )+b c x \left (-225 c^6 x^6+63 c^4 x^4+140 c^2 x^2+840\right )+105 b \sqrt {1-c^2 x^2} \left (15 c^6 x^6-3 c^4 x^4-4 c^2 x^2-8\right ) \sin ^{-1}(c x)\right )}{11025 c^6 \sqrt {1-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]

[Out]

(Sqrt[d - c^2*d*x^2]*(b*c*x*(840 + 140*c^2*x^2 + 63*c^4*x^4 - 225*c^6*x^6) + 105*a*Sqrt[1 - c^2*x^2]*(-8 - 4*c
^2*x^2 - 3*c^4*x^4 + 15*c^6*x^6) + 105*b*Sqrt[1 - c^2*x^2]*(-8 - 4*c^2*x^2 - 3*c^4*x^4 + 15*c^6*x^6)*ArcSin[c*
x]))/(11025*c^6*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 177, normalized size = 0.69 \[ \frac {{\left (225 \, b c^{7} x^{7} - 63 \, b c^{5} x^{5} - 140 \, b c^{3} x^{3} - 840 \, b c x\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {-c^{2} x^{2} + 1} + 105 \, {\left (15 \, a c^{8} x^{8} - 18 \, a c^{6} x^{6} - a c^{4} x^{4} - 4 \, a c^{2} x^{2} + {\left (15 \, b c^{8} x^{8} - 18 \, b c^{6} x^{6} - b c^{4} x^{4} - 4 \, b c^{2} x^{2} + 8 \, b\right )} \arcsin \left (c x\right ) + 8 \, a\right )} \sqrt {-c^{2} d x^{2} + d}}{11025 \, {\left (c^{8} x^{2} - c^{6}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

1/11025*((225*b*c^7*x^7 - 63*b*c^5*x^5 - 140*b*c^3*x^3 - 840*b*c*x)*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1) +
105*(15*a*c^8*x^8 - 18*a*c^6*x^6 - a*c^4*x^4 - 4*a*c^2*x^2 + (15*b*c^8*x^8 - 18*b*c^6*x^6 - b*c^4*x^4 - 4*b*c^
2*x^2 + 8*b)*arcsin(c*x) + 8*a)*sqrt(-c^2*d*x^2 + d))/(c^8*x^2 - c^6)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [C]  time = 0.52, size = 880, normalized size = 3.44 \[ a \left (-\frac {x^{4} \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{7 c^{2} d}+\frac {-\frac {4 x^{2} \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{35 c^{2} d}-\frac {8 \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{105 d \,c^{4}}}{c^{2}}\right )+b \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (64 c^{8} x^{8}-144 c^{6} x^{6}-64 i \sqrt {-c^{2} x^{2}+1}\, x^{7} c^{7}+104 c^{4} x^{4}+112 i \sqrt {-c^{2} x^{2}+1}\, x^{5} c^{5}-25 c^{2} x^{2}-56 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+7 i \sqrt {-c^{2} x^{2}+1}\, x c +1\right ) \left (i+7 \arcsin \left (c x \right )\right )}{6272 c^{6} \left (c^{2} x^{2}-1\right )}+\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (16 c^{6} x^{6}-28 c^{4} x^{4}-16 i \sqrt {-c^{2} x^{2}+1}\, x^{5} c^{5}+13 c^{2} x^{2}+20 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}-5 i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) \left (i+5 \arcsin \left (c x \right )\right )}{3200 c^{6} \left (c^{2} x^{2}-1\right )}-\frac {5 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) \left (i+\arcsin \left (c x \right )\right )}{128 c^{6} \left (c^{2} x^{2}-1\right )}-\frac {5 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )-i\right )}{128 c^{6} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+4 c^{4} x^{4}-3 i \sqrt {-c^{2} x^{2}+1}\, x c -5 c^{2} x^{2}+1\right ) \left (-i+3 \arcsin \left (c x \right )\right )}{1152 c^{6} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (64 i \sqrt {-c^{2} x^{2}+1}\, x^{7} c^{7}+64 c^{8} x^{8}-112 i \sqrt {-c^{2} x^{2}+1}\, x^{5} c^{5}-144 c^{6} x^{6}+56 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+104 c^{4} x^{4}-7 i \sqrt {-c^{2} x^{2}+1}\, x c -25 c^{2} x^{2}+1\right ) \left (-i+7 \arcsin \left (c x \right )\right )}{6272 c^{6} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) \left (-13 i+15 \arcsin \left (c x \right )\right ) \cos \left (4 \arcsin \left (c x \right )\right )}{7200 c^{6} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c^{2} x^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) \left (-i+105 \arcsin \left (c x \right )\right ) \sin \left (4 \arcsin \left (c x \right )\right )}{14400 c^{6} \left (c^{2} x^{2}-1\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x)

[Out]

a*(-1/7*x^4*(-c^2*d*x^2+d)^(3/2)/c^2/d+4/7/c^2*(-1/5*x^2*(-c^2*d*x^2+d)^(3/2)/c^2/d-2/15/d/c^4*(-c^2*d*x^2+d)^
(3/2)))+b*(1/6272*(-d*(c^2*x^2-1))^(1/2)*(64*c^8*x^8-144*c^6*x^6-64*I*(-c^2*x^2+1)^(1/2)*x^7*c^7+104*c^4*x^4+1
12*I*(-c^2*x^2+1)^(1/2)*x^5*c^5-25*c^2*x^2-56*I*(-c^2*x^2+1)^(1/2)*x^3*c^3+7*I*(-c^2*x^2+1)^(1/2)*x*c+1)*(I+7*
arcsin(c*x))/c^6/(c^2*x^2-1)+3/3200*(-d*(c^2*x^2-1))^(1/2)*(16*c^6*x^6-28*c^4*x^4-16*I*(-c^2*x^2+1)^(1/2)*x^5*
c^5+13*c^2*x^2+20*I*(-c^2*x^2+1)^(1/2)*x^3*c^3-5*I*(-c^2*x^2+1)^(1/2)*x*c-1)*(I+5*arcsin(c*x))/c^6/(c^2*x^2-1)
-5/128*(-d*(c^2*x^2-1))^(1/2)*(c^2*x^2-I*(-c^2*x^2+1)^(1/2)*x*c-1)*(I+arcsin(c*x))/c^6/(c^2*x^2-1)-5/128*(-d*(
c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)*(arcsin(c*x)-I)/c^6/(c^2*x^2-1)+1/1152*(-d*(c^2*x^2-1))
^(1/2)*(4*I*(-c^2*x^2+1)^(1/2)*x^3*c^3+4*c^4*x^4-3*I*(-c^2*x^2+1)^(1/2)*x*c-5*c^2*x^2+1)*(-I+3*arcsin(c*x))/c^
6/(c^2*x^2-1)+1/6272*(-d*(c^2*x^2-1))^(1/2)*(64*I*(-c^2*x^2+1)^(1/2)*x^7*c^7+64*c^8*x^8-112*I*(-c^2*x^2+1)^(1/
2)*x^5*c^5-144*c^6*x^6+56*I*(-c^2*x^2+1)^(1/2)*x^3*c^3+104*c^4*x^4-7*I*(-c^2*x^2+1)^(1/2)*x*c-25*c^2*x^2+1)*(-
I+7*arcsin(c*x))/c^6/(c^2*x^2-1)+1/7200*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)*(-13*I+15*
arcsin(c*x))*cos(4*arcsin(c*x))/c^6/(c^2*x^2-1)-1/14400*(-d*(c^2*x^2-1))^(1/2)*(I*c^2*x^2-c*x*(-c^2*x^2+1)^(1/
2)-I)*(-I+105*arcsin(c*x))*sin(4*arcsin(c*x))/c^6/(c^2*x^2-1))

________________________________________________________________________________________

maxima [A]  time = 0.61, size = 197, normalized size = 0.77 \[ -\frac {1}{105} \, {\left (\frac {15 \, {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} x^{4}}{c^{2} d} + \frac {12 \, {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} x^{2}}{c^{4} d} + \frac {8 \, {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}}{c^{6} d}\right )} b \arcsin \left (c x\right ) - \frac {1}{105} \, {\left (\frac {15 \, {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} x^{4}}{c^{2} d} + \frac {12 \, {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} x^{2}}{c^{4} d} + \frac {8 \, {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}}{c^{6} d}\right )} a - \frac {{\left (225 \, c^{6} \sqrt {d} x^{7} - 63 \, c^{4} \sqrt {d} x^{5} - 140 \, c^{2} \sqrt {d} x^{3} - 840 \, \sqrt {d} x\right )} b}{11025 \, c^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

-1/105*(15*(-c^2*d*x^2 + d)^(3/2)*x^4/(c^2*d) + 12*(-c^2*d*x^2 + d)^(3/2)*x^2/(c^4*d) + 8*(-c^2*d*x^2 + d)^(3/
2)/(c^6*d))*b*arcsin(c*x) - 1/105*(15*(-c^2*d*x^2 + d)^(3/2)*x^4/(c^2*d) + 12*(-c^2*d*x^2 + d)^(3/2)*x^2/(c^4*
d) + 8*(-c^2*d*x^2 + d)^(3/2)/(c^6*d))*a - 1/11025*(225*c^6*sqrt(d)*x^7 - 63*c^4*sqrt(d)*x^5 - 140*c^2*sqrt(d)
*x^3 - 840*sqrt(d)*x)*b/c^5

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int x^5\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,\sqrt {d-c^2\,d\,x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2),x)

[Out]

int(x^5*(a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{5} \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(-c**2*d*x**2+d)**(1/2)*(a+b*asin(c*x)),x)

[Out]

Integral(x**5*sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x)), x)

________________________________________________________________________________________